Please do each of the following problems, providing concise answers with justification.
The total number of points is 100 .

1. (10p) Let $A \in \mathcal{C}^{m \times n}$ with $m \geq n$. Show that $A^{*} A$ is nonsingular if and only if A has full column rank.
2. (10p) Let $A \in \mathcal{C}^{m \times m}$ and $A=A^{*}$.
(a) Prove that all eigenvalues of A are real.
(b) Let x and y be eigenvectors of A corresponding to eigenvalues λ and μ respectively. Give a sufficient condition on λ and μ for x and y to be orthogonal.
3. (10p) Prove that the determinant of a Householder reflector is negative one.
4. (15p) Fix $0<\varepsilon<1$ and suppose that $A \in R^{m \times m}$ is symmetric and nonsingular. Show that if $\|A-I\|_{F} \geq \varepsilon$, then $\left\|A^{-1}-I\right\|_{F} \geq \frac{\varepsilon}{2}$, where $\|\cdot\|_{F}$ denotes the Frobenius norm.
5. (15p) Determine the rate of convergence of the Rayleigh quotient $r\left(\mathbf{v}_{k}\right)=\mathbf{v}_{k}^{T} A \mathbf{v}_{k}$, to an eigenvalue of $A \in \mathcal{R}^{n \times n}, A=A^{T}$, with vectors $\mathbf{v}_{k} \in \mathcal{R}^{n}$ given by the normalized power $\operatorname{method} \mathbf{v}_{k+1}=A \mathbf{v}_{k} /\left\|A \mathbf{v}_{k}\right\|$.
6. Suppose $A x=b$ and $(A+\delta A) \hat{x}=b+\delta b$ and assume that

$$
\left\|\left(I+A^{-1} \delta A\right)^{-1}\right\| \leq \frac{1}{1-\|\delta A\|\left\|A^{-1}\right\|}
$$

(a) (10p) Show that

$$
\begin{equation*}
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A) \frac{\|\delta A\|}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right) \tag{1}
\end{equation*}
$$

where $\hat{x}=x+\delta x$ and $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$.
(b) (10p) Let $\delta A=0$ and

$$
A=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)
$$

Find vectors δb and b such that the bound (1) becomes an equality.

Name:
Numerical Analysis Qualifying Exam Spring 2021
7. (20p) Let $A \in \mathcal{R}^{n \times n}$ be symmetric and positive definite (spd), and consider the following iteration.

```
Choose \(A_{0}=A\)
for \(k=0,1,2, \ldots\).
    Compute the Cholesky factor \(L_{k}\) of \(A_{k}\) (so \(A_{k}=L_{k} L_{k}^{T}\) )
    Set \(A_{k+1}=L_{k}^{T} L_{k}\)
end
```

Here L_{k} is lower triangular with positive diagonal elements.
(a) Show that A_{k} is similar to A, and that A_{k} is spd (the iteration is therefore welldefined).
Now consider the special case of a 2×2 spd matrix,

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \quad a \geq c
$$

(b) For this matrix, perform one step of the algorithm and write down A_{1}.
(c) Use the result from (b) to argue that A_{k} converges to $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, where the eigenvalues of A are ordered as $\lambda_{1} \geq \lambda_{2}>0$.

