Please do each of the following problems, providing concise answers with justification.

The total number of points is 100.

1. (10p) Let $A \in \mathcal{C}^{m \times n}$ with $m \ge n$. Show that A^*A is nonsingular if and only if A has full column rank.

- 2. (10p) Let $A \in \mathcal{C}^{m \times m}$ and $A = A^*$.
 - (a) Prove that all eigenvalues of A are real.
 - (b) Let x and y be eigenvectors of A corresponding to eigenvalues λ and μ respectively. Give a sufficient condition on λ and μ for x and y to be orthogonal.

3. (10p) Prove that the determinant of a Householder reflector is negative one.

Name:

4. (15p) Fix $0 < \varepsilon < 1$ and suppose that $A \in \mathbb{R}^{m \times m}$ is symmetric and nonsingular. Show that if $||A - I||_F \ge \varepsilon$, then $||A^{-1} - I||_F \ge \frac{\varepsilon}{2}$, where $|| \cdot ||_F$ denotes the Frobenius norm.

5. (15p) Determine the rate of convergence of the Rayleigh quotient $r(\mathbf{v}_k) = \mathbf{v}_k^T A \mathbf{v}_k$, to an eigenvalue of $A \in \mathcal{R}^{n \times n}, A = A^T$, with vectors $\mathbf{v}_k \in \mathcal{R}^n$ given by the normalized power method $\mathbf{v}_{k+1} = A \mathbf{v}_k / ||A \mathbf{v}_k||$.

Name:

Name:Numerical Analysis Qualifying Exam Spring 20216. Suppose Ax = b and $(A + \delta A)\hat{x} = b + \delta b$ and assume that

$$\|(I + A^{-1}\delta A)^{-1}\| \le \frac{1}{1 - \|\delta A\| \|A^{-1}\|}.$$

(a) (10p) Show that

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\kappa(A)}{1 - \kappa(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right),\tag{1}$$

where $\hat{x} = x + \delta x$ and $\kappa(A) = ||A|| \cdot ||A^{-1}||$.

(b) (10p) Let $\delta A = 0$ and

$$A = \left(\begin{array}{cc} 0 & 2\\ 1 & 0 \end{array}\right).$$

Find vectors δb and b such that the bound (1) becomes an equality.

7. (20p) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite (spd), and consider the following iteration.

Choose $A_0 = A$ for k = 0, 1, 2, ...Compute the Cholesky factor L_k of A_k (so $A_k = L_k L_k^T$) Set $A_{k+1} = L_k^T L_k$ end

Here L_k is lower triangular with positive diagonal elements.

(a) Show that A_k is similar to A, and that A_k is spd (the iteration is therefore well-defined).

Now consider the special case of a 2×2 spd matrix,

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right), \qquad a \ge c,$$

- (b) For this matrix, perform one step of the algorithm and write down A_1 .
- (c) Use the result from (b) to argue that A_k converges to diag (λ_1, λ_2) , where the eigenvalues of A are ordered as $\lambda_1 \ge \lambda_2 > 0$.